Bacteria-mediated hypoxia functions as a signal for mosquito development.

نویسندگان

  • Kerri L Coon
  • Luca Valzania
  • David A McKinney
  • Kevin J Vogel
  • Mark R Brown
  • Michael R Strand
چکیده

Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that several mosquito species, including Aedes aegypti, do not develop beyond the first instar when fed a nutritionally complete diet in the absence of a gut microbiota. In contrast, several species of bacteria, including Escherichia coli, rescue development of axenic larvae into adults. The molecular mechanisms underlying bacteria-dependent growth are unknown. Here, we designed a genetic screen around E. coli that identified high-affinity cytochrome bd oxidase as an essential bacterial gene product for mosquito growth. Bioassays showed that bacteria in nonsterile larvae and gnotobiotic larvae inoculated with wild-type E. coli reduced midgut oxygen levels below 5%, whereas larvae inoculated with E. coli mutants defective for cytochrome bd oxidase did not. Experiments further supported that hypoxia leads to growth and ecdysone-induced molting. Altogether, our results identify aerobic respiration by bacteria as a previously unknown but essential process for mosquito development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti.

Gut microbes positively affect the physiology of many animals, but the molecular mechanisms underlying these benefits remain poorly understood. We recently reported that bacteria-induced gut hypoxia functions as a signal for growth and molting of the mosquito Aedes aegypti In this study, we tested the hypothesis that transduction of a gut hypoxia signal requires hypoxia-induced transcription fa...

متن کامل

Enterobacter-Activated Mosquito Immune Responses to Plasmodium Involve Activation of SRPN6 in Anopheles stephensi

Successful development of Plasmodium in the mosquito is essential for the transmission of malaria. A major bottleneck in parasite numbers occurs during midgut invasion, partly as a consequence of the complex interactions between the endogenous microbiota and the mosquito immune response. We previously identified SRPN6 as an immune component which restricts Plasmodium berghei development in the ...

متن کامل

Anopheles gambiae PGRPLC-Mediated Defense against Bacteria Modulates Infections with Malaria Parasites

Recognition of peptidoglycan (PGN) is paramount for insect antibacterial defenses. In the fruit fly Drosophila melanogaster, the transmembrane PGN Recognition Protein LC (PGRP-LC) is a receptor of the Imd signaling pathway that is activated after infection with bacteria, mainly Gram-negative (Gram-). Here we demonstrate that bacterial infections of the malaria mosquito Anopheles gambiae are sen...

متن کامل

The Danger Signal Adenosine Induces Persistence of Chlamydial Infection through Stimulation of A2b Receptors

Infections with intracellular bacteria such as chlamydiae affect the majority of the world population. Infected tissue inflammation and granuloma formation help contain the short-term expansion of the invading pathogen, leading also to local tissue damage and hypoxia. However, the effects of key aspects of damaged inflamed tissues and hypoxia on continued infection with intracellular bacteria r...

متن کامل

Silencing of Anopheles stephensi Heme Peroxidase HPX15 Activates Diverse Immune Pathways to Regulate the Growth of Midgut Bacteria

Anopheles mosquito midgut harbors a diverse group of endogenous bacteria that grow extensively after the blood feeding and help in food digestion and nutrition in many ways. Although, the growth of endogenous bacteria is regulated by various factors, however, the robust antibacterial immune reactions are generally suppressed in this body compartment by a heme peroxidase HPX15 crosslinked mucins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 27  شماره 

صفحات  -

تاریخ انتشار 2017